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ABSTRACT

We show that the existence of a nontrivial Massey product in the co-

homology ring H∗(X) imposes global constraints upon the Riemannian

geometry of a manifold X. Namely, we exhibit a suitable systolic inequal-

ity, associated to such a product. This generalizes an inequality proved in

collaboration with Y. Rudyak, in the case when X has unit Betti numbers,

and realizes the next step in M. Gromov’s program for obtaining geometric

inequalities associated with nontrivial Massey products. The inequality is

a volume lower bound, and depends on the metric via a suitable isoperi-

metric quotient. The proof relies upon W. Banaszczyk’s upper bound for

the successive minima of a pair of dual lattices. Such an upper bound is

applied to the integral lattices in homology and cohomology of X. The

possibility of applying such upper bounds to obtain volume lower bounds

was first exploited in joint work with V. Bangert. The latter work deduced

systolic inequalities from nontrivial cup-product relations, whose role here

is played by Massey products.
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1. Volume bounds and systolic category

A general framework for systolic geometry in a topological context was proposed

in [KR06], in terms of a new numerical invariant called systolic category,

denoted catsys(X), of a space X . The terminology is inspired by the intrigu-

ing connection which emerges with the classical numerical invariant called the

Lusternik-Schnirelmann category. Thus, we have the following.

• the two categories (i.e. the two integers) coincide for 2-complexes

[KRS06];

• the two categories coincide for 3-manifolds, orientable or not [KR06,

KR07];

• systolic category is a lower bound for the LS category for orientable

4-manifolds [DKR07];

• the two categories attain their maximal value simultaneously [KR06];

• both categories admit a lower bound in terms of real cup-length [Gr83,

BK03];

• both categories are sensitive to Massey products [KL05, KR06, KR07,

DKR07].

Definition 1.1: The stable k-systole of a Riemannian manifold is the least stable

norm of a nonzero element in the integer lattice in its k-dimensional homology

group with real coefficients.

A more detailed definition appears below, cf. formula (4.5).

The invariant catsys is defined in terms of the existence of volume lower

bounds of a certain type. Namely, these are bounds by products of lower-

dimensional systoles. The invariant catsys is, roughly, the greatest length d of

a product
d

∏

i=1

syski
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of systoles which provides a universal lower bound for the volume, i.e. a curva-

ture-independent lower bound of the following form:

d
∏

i=1

syski
(G) ≤ Cvol(G),

see [KR06] for details. The definitions of the systolic invariants involved may

also be found in [Gr83, CrK03, KL05].

We study stable systolic inequalities satisfied by an arbitrary metric G on a

closed, smooth manifold X . We aim to go beyond the multiplicative structure,

defined by the cup product, in the cohomology ring, whose systolic effects were

studied in [Gr83, He86, BK03, BK04], and explore the systolic influence of

Massey products.

Remark 1.2: This line of investigation is inspired by M. Gromov’s remarks

[Gr83, 7.4.C′, p. 96] and [Gr83, 7.5.C, p. 102], outlining a program for ob-

taining geometric inequalities associated to nontrivial Massey products of any

length. The first step in the program was carried out in [KR06] in the presence

of a nontrivial triple Massey product in a manifold with unit Betti numbers.

In the present work, we exploit W. Banaszczyk’s bound (4.4) for the successive

minima of a pair of dual lattices, applied to the integral lattices in homology

and cohomology of X . The possibility of exploiting such bounds to obtain

inequalities was first demonstrated in the joint work with V. Bangert [BK03]

on systolic inequalities associated to nontrivial cup product relations in the

cohomology ring of X .

Whenever a manifold admits a nontrivial Massey product, we seek to ex-

hibit a corresponding inequality for the stable systoles. While nontrivial cup

product relations in cohomology entail stable systolic inequalities which are

metric-independent and curvature-free [BK03], the influence of Massey prod-

ucts on systoles is more difficult to pin down. The inequalities obtained so far

do depend mildly on the metric, via isoperimetric quotients, cf. (2.2).

The idea is to show that if, in a certain dimension k ≤ n, one can span the

cohomology by classes which can be expressed in terms of lower-dimensional

classes by either Massey or cup products, then the stable k-systole (cf. Def-

inition 4.6) admits a bound from below in terms of lower-dimensional stable

systoles, and of certain isoperimetric constants of the metric, but no further

metric data. Typical examples are inequalities (3.1), (3.2), (3.3).
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Massey products and isoperimetric quotients are reviewed in Section 2. The

theorems are stated in Section 3. Banaszczyk’s results are reviewed in Section 4.

The key notion of quasiorthogonal element of a Massey product is defined in

Section 5. The theorems are proved in Section 6.

The basic reference for this material is M. Gromov’s monograph [Gr99], with

additional details in the earlier works [Gr83, Gr96]. For a survey of progress in

systolic geometry up to 2003, see [CrK03]. More recent results include a study

of optimal inequalities of Loewner type [Am04, IK04, BCIK07, KL05, KS06a],

as well as near-optimal asymptotic bounds [BabB05, Ka03, KS05, KS06b, Sa04,

Sa06, KSV05], while generalisations of Pu’s inequality are studied in [BCIK05]

and [BKSS06]. For an overview of systolic questions, see [Ka07].

2. Massey products and isoperimetric quotients

In Theorem 3.1, we will use a hypothesis which in the case of no indeterminacy

of Massey products, amounts simply to requiring every cohomology class to be

a sum of Massey products. In general, the condition is slightly stronger, and

informally can be described by saying that any system of representatives of

Massey products already spans the entire cohomology space.

Following the notation of [KR06], consider (homogeneous) cohomology classes

u, v, w with uv = 0 = vw. Then the triple Massey product

〈u, v, w〉 ⊂ H∗
dR

is defined as follows. Let a, b, c be closed differential forms whose homology

classes are u, v, w respectively. Then dx = ab, dy = bc for suitable differential

forms x, y. Then 〈u, v, w〉 is defined to be the set of elements of the form

xc− (−1)|u|ay,

see [Ma69, RT00] for more details. The set 〈u, v, w〉 is a coset with respect

to the so-called indeterminacy subgroup Indet ⊂ H |u|+|v|+|w|−1, defined as

follows:

(2.1) Indet = uH |v|+|w|−1 + H |u|+|v|−1w.

A Massey product is said to be nontrivial if it does not contain 0.

Definition 2.1: Let m ≥ 1. The (3m − 1)-dimensional de Rham cohomology

space of a manifold X is of Massey type if it has the following property.
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Let V ⊂ H3m−1
dR (X) be a subspace with nonempty intersection with every non-

trivial triple Massey product 〈u, v, w〉, u, v, w ∈ Hm
dR(X). Then V = H3m−1

dR (X).

Given a compact Riemannian manifold (X,G), and a positive integer k ≤

dim X , denote by IQk = IQk(G) the isoperimetric quotient, defined by

(2.2) IQk(G) = sup
α∈Ωk(X)

inf
β

{

‖β‖∗

‖α‖∗

∣

∣

∣
dβ = α

}

,

where ‖ ‖∗ is the comass norm [Fe74], and the supremum is taken over all

exact k-forms. The relation of such quotients to filling inequalities is described

in [Si05, Section 4, Proposition 1], cf. [Fe74, item 4.13].

3. The results

The following theorem generalizes [KR06, Theorem 13.1] to the case of arbitrary

Betti number.

Theorem 3.1: Let X be a connected closed orientable smooth manifold. Let

m ≥ 1, and assume b = bm(X) > 0. Furthermore, assume that the following

three hypotheses are satisfied:

(1) the cup product map ∪ : Hm
dR(X) ⊗ Hm

dR(X) → H2m
dR (X) is the zero

map;

(2) the space H3m−1
dR (X) is of Massey type in the sense of Definition 2.1;

(3) the group H2m(X, Z) is torsionfree.

Then every metric G on X satisfies the inequality

(3.1) stsysm(G)3 ≤ C(m)(b(1 + log b))3 IQ2m(G) stsys3m−1(G),

where C(m) is a constant depending only on m.

Note that the dimensionality of the factor IQk(G) is (length)+1, making in-

equality (3.1) scale-invariant, cf. [Gr83, 7.4.C′, p. 96 and 7.5.C, p. 102].

The proof of Theorem 3.1 appears in Section 6.

An important special case is a lower bound for the total volume. While

Hypothesis 2 of Theorem 3.1 is rather restrictive, similar inequalities can be

proved in the presence of a nontrivial Massey product, even if Hypothesis 2 is

not satisfied, provided one replaces the systole in the right hand side by the total

volume. The simplest example of a theorem along these lines is the following.
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Theorem 3.2: Let X be a closed orientable smooth manifold of dimension 7.

Assume that the following three hypotheses are satisfied:

(1) the cup product vanishes on H2
dR(X);

(2) there are classes u, v, w ∈ H2
dR(X) such that the triple Massey prod-

uct 〈u, v, w〉 ⊂ H5
dR(X) is nontrivial;

(3) the group H4(X, Z) is torsionfree.

Then every metric G on X satisfies the inequality

(3.2) stsys2(G)
4 ≤ C(b2(X)) IQ4(G)vol7(G),

where the constant C(b2(X)) > 0 depends only on the second Betti number

of X .

Examples of manifolds to which Theorem 3.1 and Theorem 3.2 can be applied,

were constructed by A. Dranishnikov and Y. Rudyak [DR03].

Our Theorem 3.2 implies the following bound for the IQ-modified systolic

category, cf. [KR06, Remark 13.1].

Corollary 3.3: Under the hypotheses of Theorem 3.2, the manifold X satis-

fies the bound catIQsys(X) ≥ 3.

Corollary 3.4: Suppose in addition to the hypotheses of Theorem 3.2 that X

is simply connected. Then catIQsys(X) ≥ catLS(X).

Proof. By [CLOT03, Theorem 1.50], the Lusternik–Schnirelmann category of

X equals 3.

Our last result attempts to go beyond both Theorem 3.1 and Theorem 3.2, in

the sense of obtaining a lower bound for a k-systole other than the total volume,

in a situation where Massey products do not necessarily span k-dimensional

cohomology.

Proposition 3.5: Consider a closed manifold X with a nontrivial triple Massey

product containing an element u ∈ H5(X). Assume that the following three

hypotheses are satisfied:

(1) the cup product vanishes on H2(X);

(2) the 8-dimensional cohomology of X is spanned by classes of type u ∪ v

and w, where v ∈ H3(X), while w ∈ H8(X) is the cup square of a 4-

dimensional class;
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(3) the group H4(X, Z) is torsionfree.

Then every metric G on X satisfies the inequality

(3.3) min

{

stsys2(G)
3 stsys3(G)

IQ4(G)
, stsys4(G)

2

}

≤ C(X) stsys8(G),

where C(X) > 0 is a constant depending only on the homotopy type of X .

The proof appears in Section 6.

4. Banaszczyk’s bound for the successive minima of a lattice

Let B be a finite-dimensional Banach space, equipped with a norm ‖ ‖. Let

L ⊂ B be a lattice of maximal rank rank(L) = dim(B). Let b = rank(L) =

dim(B).

Definition 4.1: For each k = 1, 2, . . . , b, define the k-th successive mini-

mum λk of the lattice L by setting

(4.1) λk(L, ‖ ‖) = inf

{

λ ∈ R

∣

∣

∣

∣

∣

∃ lin. indep. v1, . . . , vk ∈ L

with ‖vi‖ ≤ λ, i = 1, . . . , k

}

.

In particular, the “first” successive minimum, λ1(L, ‖ ‖), is the least length

of a nonzero element in L.

Definition 4.2: Denote the “last” successive minimum by

(4.2) Λ(L, ‖ ‖) = λb(L, ‖ ‖).

Definition 4.3: A linearly independent family

{vi}i=1,...,b ⊂ L

is called quasiorthogonal if ‖vi‖ = λi for all i = 1, . . . , b.

Note that a quasiorthogonal family spans a lattice of finite index in L, but

may in general not be an integral basis, a source of some of the complications

of the successive minimum literature.

Dually, we have the Banach space B∗ = Hom(B, R), with norm ‖ ‖∗, and

dual lattice L∗ ⊂ B∗, with rank(L∗) = rank(L).
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Theorem 4.4 (W. Banaszczyk): Every lattice L in every Banach space (B, ‖ ‖)

satisfies the inequality

(4.3) λ1(L, ‖ ‖) Λ(L∗, ‖ ‖∗) ≤ Cb(1 + log b),

for a suitable numerical constant C, where b = rank(L).

In fact, the upper bound is valid more generally for the product

(4.4) λi(L)λb−i+1(L
∗),

for all i = 1, . . . , b [Ban96].

Remark 4.5: A lattice L ⊂ R
b admits an orthogonal basis if and only if

λi(L)λb−i+1(L
∗) = 1 for all i. Thus, Banaszczyk’s bound can be thought of

as a measure of the quasiorthogonality of a lattice in Banach space.

Given a class α ∈ Hk(M ; Z) of infinite order, we define the stable norm ‖αR‖

by setting

‖αR‖ = lim
m→∞

m−1 inf
α(m)

volk(α(m)),

where αR denotes the image of α in real homology, while α(m) runs over all

Lipschitz cycles with integral coefficients representing the multiple class mα.

The stable norm is dual to the comass norm ‖ ‖∗ in cohomology, cf. [Fe74,

BK03].

Definition 4.6: The stable homology k-systole of (X,G) is

(4.5) stsysk(G) = λ1(Hk(X, Z)R, ‖ ‖),

where ‖ ‖ is the stable norm.

5. Linearity vs. indeterminacy of triple Massey products

We will denote by Hk
dR(X, Z) the image of integral cohomology in real cohomol-

ogy under inclusion of coefficients. Let {[vi]} ⊂ Hm
dR(X, Z) be a quasiorthogonal

family in the sense of Definition 4.3, with

‖vi‖
∗ = λi(H

m
dR(X, Z), ‖ ‖∗),

as in formula (4.1), where ‖ ‖∗ is the comass norm. Here we assume, to sim-

plify the calculations, that each m-form vi minimizes the comass norm in its

cohomology class. Given an exact (2m)-form vi ∧ vj , let wij be a primitive of

least comass, cf. (2.2).
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Definition 5.1: An element of the form

[wij ∧ vk − (−1)mvi ∧ wjk] ∈ 〈vi, vj , vk〉

is called a quasiorthogonal element of the Massey product 〈vi, vj , vk〉.

Lemma 5.2: Under the hypotheses of Theorem 3.1, the existence of a nontrivial

Massey product implies the existence of a nonzero quasiorthogonal element of

a suitable Massey product.

Proof. The lemma follows by linearity, cf. (5.5). Since the detailed proof con-

tains a delicate point involving indeterminacy, we include it here. By trivi-

ality of cup product hypothesis (1) of Theorem 3.1, for each pair of indices

1 ≤ i, j ≤ bm(X), there is a (2m− 1)-form wij solving the equation

(5.1) vi ∧ vj = dwij .

Furthermore, given a metric G, we can assume that wij satisfies the inequality

(5.2) ‖wij‖
∗ ≤ IQ2m(G)‖vi ∧ vj‖

∗,

cf. formula (2.2).

Using index notation (Einstein summation convention), let i, j, k run from

1 to bm(X). Let 〈u, v, w〉 be a nontrivial Massey product, as in Theorem 3.1.

Choose representative differential forms α = αivi ∈ u, β = βjvj ∈ v, and γ =

γkvk ∈ w. Then

α ∧ β =
(

αivi

)

∧
(

βjvj

)

= αiβjvi ∧ vj = αiβjdwij = d
(

αiβjwij

)

,(5.3)

and similarly β ∧ γ = d
(

βjγkwjk

)

. Since the Massey product is nontrivial, we

obtain a nonzero cohomology class

(5.4)
[

αiβjwij ∧ γ − (−1)mα ∧ βjγkwjk

]

6= 0 ∈ H3m−1
dR (X).

By linearity, we have

(5.5) αiβjwij ∧ γ − (−1)mα ∧ βjγkwjk =

αiβjγk
(

wij ∧ vk − (−1)mvi ∧ wjk

)

.

Therefore

(5.6) αiβjγk [wij ∧ vk − (−1)mvi ∧ wjk] 6= 0 ∈ H3m−1
dR (X).
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In fact, the nontriviality of the Massey product yields the stronger conclusion

that we have a nonzero class in the quotient

(5.7) αiβjγk [wij ∧ vk − (−1)mvi ∧ wjk] 6= 0 ∈ H3m−1
dR (X)/ Indet,

cf. (2.1). Hence, for suitable indices 1 ≤ s, t, r ≤ bm(X), we obtain a nonzero

class

[wst ∧ vr − (−1)mvs ∧ wtr] ∈ 〈vs, vt, vr〉

in H3m−1
dR (X)/ Indet. Note that this conclusion differs from the assertion that

the Massey product 〈vs, vt, vr〉 is nontrivial, since its indeterminacy subspace

may be different from that of the Massey product 〈u, v, w〉.

Remark 5.3: The indices s, t, r above may depend on the various choices in-

volved in the construction, but the key estimate (6.2) remains valid, due to the

uniqueness of the least natural number, by the well-ordered property of N.

Lemma 5.4: Let x0 ∈ H3m−1(X, R) be a fixed nonzero class. The hypotheses

of Theorem 3.1 imply the existence of a nonzero quasiorthogonal element of a

Massey product, which pairs nontrivially with x0.

Proof. Consider the family of all quasiorthogonal elements qi of Massey prod-

ucts. Let V be the vector space spanned by all such elements qi. By (5.5), the

space V meets every nontrivial Massey product. By our Massey-type hypothe-

sis, we have

(5.8) V = H3m−1
dR (X).

Choose any cohomology class a which pairs nontrivially with x0, i.e.

a(x0) 6= 0. By (5.8), we can write a = aiqi, where qi are quasiorthogonal

elements of Massey products. Thus aiqi(x0) 6= 0 and by linearity, one of the

quasiorthogonal elements, say qi0 , also pairs nontrivially with x0.

Lemma 5.5: Assume H2m(X, Z) is torsionfree. Then every quasiorthogonal

element of a Massey product satisfies the integrality condition

(5.9)

∫

x0

〈vs, vt, vr〉 ∈ Z,

where x0 ∈ Hm(X, Z) is any integral class.

Proof. Choose representatives for the vi in the cohomology group with integer

coefficients Hm(X, Z) in the sense of singular cohomology theory. We denote
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these representatives ṽi. Choose an m-cocycle ˜̃vi ∈ ṽi. Note that the class

[˜̃vs ∧ ˜̃vt] ∈ H2m(X, Z)

vanishes integrally, and thus the Massey product 〈ṽs, ṽt, ṽr〉 is defined over Z.

The lemma now follows from the compatibility of the de Rham and the singular

Massey product theories, verified in [Ma69] and [KR06, Section 11], in terms of

differential graded associative (dga) algebras, cf. Remark 5.6 below.

Remark 5.6: The following three remarks were kindly provided by R. Hain (see

[KR06, Ka07] for more details).

1. If A∗ and B∗ are dga algebras (not necessarily commutative) and

f : A∗ → B∗ is a dga homomorphism that induces an isomorphism on

homology, then Massey products in H∗(A∗) and H∗(B∗) correspond under

f∗ : H∗(A∗)→ H∗(B∗).

2. If M is a manifold, then there is a dga K∗ that contains both the de Rham

complex A∗(M) of M , and also the singular cochain complex S∗(M) of M . The

two inclusions

A∗(M)→ K∗ ← S∗(M)

are both dga quasi-isomorphisms (i.e. induce isomorphism in cohomology), cf.

[FHT98, Corollary 10.10].

3. The point is that the inclusions A∗(M)→ K∗ ← S∗(M) are both dga ho-

momorphisms (and quasi-isomorphisms), even though A∗(M) is commutative

and S∗(M) is not. Combining these two remarks, we see that Massey products

in singular cohomology and in de Rham cohomology correspond. The com-

plex K∗ is a standard tool in rational homotopy theory. It is defined as follows.

Let Simp be the simplicial set of smooth singular simplices of M . Then K∗ is

Thom-Whitney complex of differential forms on Simp.

6. Proofs of main results

Proof of Theorem 3.1. Let G be a metric on X . Let ‖ ‖ be the associated stable

norm in homology. Choose a class x0 ∈ H3m−1(X, Z)R satisfying

(6.1) ‖x0‖ = stsys3m−1(X,G) = λ1(H3m−1(X, Z)R, ‖ ‖).

We can then choose a cohomology class α ∈ H3m−1
dR (X, Z) which pairs nontriv-

ially with the class x0, i.e. satisfying α(x0) 6= 0. We will write this condition
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suggestively as
∫

x0

α 6= 0. A reader familiar with normal currents can inter-

pret integration in the sense of the minimizing normal current representing the

class x0. Otherwise, choose a rational Lipschitz m-cycle of volume ǫ-close to

the value (6.1), and let ǫ tend to zero at the end of the calculation below.

By Lemma 5.4, the class α can be replaced by a quasiorthogonal element of

a Massey product 〈vs, vt, vr〉, which also pairs nontrivially with x0.

Recall that ‖ ‖∗ is the comass norm in cohomology. Changing orientations if

necessary, we obtain from (5.9) that

(6.2) 1 ≤

∫

x0

wst ∧ vr − (−1)mvs ∧ wtr,

and therefore

(6.3) 1 ≤ C(m) (‖wst‖
∗‖vr‖

∗ + ‖vs‖
∗‖wtr‖

∗) ‖x0‖,

where C(m) depends only on m. Now by (5.2), we have

1 ≤ 2C(m)‖vs‖
∗‖vt‖

∗‖vr‖
∗ IQ2m(G)‖x0‖

= 2C(m)λsλtλr IQ2m(G)‖x0‖

≤ 2C(m)
(

Λ
(

Hm
dR (X, Z), ‖ ‖∗

)

)3

IQ2m(G)‖x0‖,

by Definition 4.2 of the “last” successive minimum Λ(L). Finally, by defini-

tion we have stsysm(G) = λ1(Hm(X), ‖ ‖), where ‖ ‖ is the stable norm, and

therefore

(6.4) stsysm(G)3 ≤ 2C(m)
(

λ1 (Hm(X)) Λ(Hm(X))
)3

IQ2m(G)‖x0‖.

Applying Banaszczyk’s inequality (4.3), we obtain

stsysm(G)3 ≤ C(m)(b(1 + log b))3 IQ2m(G)‖x0‖

= C(m)(b(1 + log b))3 IQ2m(G) stsys3m−1(G),

where b = bm(X), while the new coefficient C(m) incorporates the numeri-

cal constant from Banaszczyk’s inequality. This completes the proof of Theo-

rem 3.1.

Proof of Theorem 3.2. Exploiting the orientability of X , we represent its fun-

damental cohomology class as a product 〈u1, u2, u3〉 ∪ u4, with ui ∈ H2(X).

Here we write 〈u1, u2, u3〉 as shorthand for an orthogonal element of a Massey

product, while u4 may be chosen to be any class which pairs nontrivially with
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the Poincaré dual of 〈u1, u2, u3〉. Relation (5.9) is replaced by the following in-

tegrality relation among the elements vi ∈ H2
dR(X) of a quasiorthogonal family:

(6.5)

∫

X

〈vs, vt, vr〉 ∪ vp ∈ Z \ {0}.

The rest of the proof is similar.

Proof of Proposition 3.5. Choose a class x0 ∈ H8(X, Z)R satisfying ‖x0‖ =

λ1(H8(X, Z)R; ‖ ‖). The class x0 pairs nontrivially with one of the classes u∪ v

or w.

If for some Massey product u, we have
∫

x0

u∪v 6= 0, we argue as in the proof of

Theorem 3.1, exploiting the hypothesis that the cup product in H2(X) is trivial,

in order to define the quasiorthogonal elements of triple Massey products.

If the class w satisfies w(x0) 6= 0, we argue with a quasiorthogonal family

in H4
dR(X, Z) as in [BK03] to obtain the lower bound for the stable norm of x0

in terms of stsys4(G)
2.
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